Solicitud de información

Matemática discreta

Código Asignatura:
1514
Nº Créditos ECTS:
6
Tipo:
Formación básica
Duración:
Semestral
Idioma:
Castellano
Plan de estudios:
Profesor(es):

La información sobre los datos de contacto y el horario de tutorías se encuentra publicada en el aula virtual de la asignatura.

Descripción

Todo futuro ingeniero de organización industrial necesita adquirir competencias en el área de la Matemática Discreta, base a partir de la cual crecen conocimientos posteriores, como, por ejemplo, en el área de la Optimización. Con ello se proporciona al estudiante los instrumentos y herramientas necesarias para analizar y resolver problemas matemáticos desde el rigor y en el contexto específico de la titulación.

Es parte de la formación básica correspondiente a las ramas de conocimiento de Ingeniería y Arquitectura contenida en el Real Decreto Real Decreto 1393/2007 y está en el módulo de Fundamentos de Matemáticas del plan.  En concreto, esta asignatura cubrirá lo que es un programa típico de Matemática Discreta: teoría de conjuntos, relaciones, lógica, inducción, aritmética modular, teoría de números, combinatoria, grafos, autómatas, álgebra de Boole, etc.

Los conocimientos y competencias adquiridos deberán ser fundamentalmente instrumentales y prácticos, y no tanto memorísticos.

El programa se divide en 10 unidades basadas cada una de ellas en los distintos capítulos del manual de la asignatura.

Antes de matricular la asignatura, verifique los posibles requisitos que pueda tener dentro de su plan. Esta información la encontrará en la pestaña "Plan de estudios" del plan correspondiente.

Competencias generales

  • Capacidades y competencias dirigidas hacia la resolución de problemas, la iniciativa, la toma de decisiones, la creatividad, el análisis y el razonamiento crítico.
  • Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.

Competencias específicas

  • Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: métodos numéricos; algorítmica numérica.

Competencias transversales

  • Capacidad de análisis y síntesis.
  • Capacidad de organización y planificación.
  • Comunicación oral y escrita en la lengua nativa.
  • Capacidad de gestión de la información.
  • Resolución de problemas.
  • Toma de decisiones.
  • Trabajo en equipo.
  • Trabajo en un equipo de carácter interdisciplinar.
  • Habilidades en las relaciones interpersonales.
  • Razonamiento crítico.
  • Compromiso ético.
  • Aprendizaje autónomo.
  • Adaptación a nuevas situaciones.
  • Creatividad.

Resultados del aprendizaje

  • Capacidad de aplicar los conocimientos matemáticos en la resolución de problemas reales.
  • Capacidad para el razonamiento abstracto y el pensamiento lógico y algorítmico.
  • Realizar con agilidad operaciones matemáticas.
  • Comprender y manejar conceptos básicos de la teoría de números elemental. Aplicar la aritmética modular al estudio de la primalidad y la factorización de números enteros.
  • Conocimientos para poder aplicar la teoría de conjuntos a un problema planteado.
  • Capacidad para aplicar los conocimientos del Álgebra de Boole a problemas.
  • Capacidad para poder representar ciertas situaciones como un grafo.
  • Compresión de los principios de la Lógica.

Metodología

La metodología adoptada en esta asignatura para el aprendizaje y evaluación de sus contenidos se encuentra adaptada al modelo de formación continuada y a distancia de la UDIMA. Los conocimientos de la asignatura se adquieren a través del estudio razonado de todas las unidades didácticas del manual, así como del material didáctico complementario que se ponga a disposición de los estudiantes en el aula virtual. Además, se complementa con la acción tutorial, que incluye asesoramiento personalizado, intercambio de impresiones en los debates habilitados en foros y demás recursos y medios que ofrecen las nuevas tecnologías de la información y la comunicación. Por otra parte, el aprendizaje también se apoya en la realización de las actividades previstas en el aula virtual, que son de tres tipos (de evaluación continua, de aprendizaje y controles), y que vienen recogidas en el apartado “Contenidos y programación”.

Para ampliar esta información, se recomienda consultar la pestaña “Metodología y exámenes” de la titulación.

Dedicación requerida

La dedicación requerida para esta asignatura de 6 créditos ECTS es de 150 horas, que se encuentran distribuidas de la siguiente manera:

  • Estudio de las Unidades Didácticas: 30%
  • Material complementario. Lectura de artículos/Visionado de vídeos en web: 5%
  • Supuestos, casos prácticos y prácticas de laboratorio: 35%
  • Búsqueda de información: 10%
  • Redacción o realización de informes: 10%
  • Acción tutorial: 5%
  • Evaluación: 5%

Tutorías

El profesor aporta un seguimiento individualizado de la actividad del estudiante para asegurar las mejores condiciones de aprendizaje mediante la tutorización a través de las herramientas de la plataforma educativa y/o de las tutorías telefónicas. En estas tutorías los estudiantes pueden consultar a los profesores las dudas acerca de la materia estudiada.

Materiales didácticos

Para el desarrollo del aprendizaje teórico sobre el que versará el examen final se ha seleccionado el siguiente manual, a partir del cual se estudiarán las unidades didácticas que se corresponden con la descripción de los contenidos de la asignatura:

Manual de la asignatura:
María Aurora Martínez Rey, Juan José Moreno García y Juan Pazos Sierra. (2016). Matemática Discreta. CEF-UDIMA.

Además, se recomienda la siguiente bibliografía de consulta voluntaria:

F. García Merayo. (2005). Matemática discreta. Thomson

J. Matousek y J. Nesetril. (2008).  Invitación a la matemática discreta. Reverté

K.H. Rosen. (2004). Matemática discreta y sus aplicaciones. McGraw-Hill

N.L. Biggs. (1994). Matematica discreta. Vicens Vives

Finalmente, el profesor podrá poner a disposición del estudiante cualquier otro material complementario voluntario al hilo de las unidades didácticas o en una carpeta de material complementario.

Contenidos y programación

SEMANAS (*) UNIDADES DIDÁCTICAS ACTIVIDADES DIDÁCTICAS
Semana 1 Unidad 1. Conjuntos
1.1. Definiciones
1.2. Subconjuntos
1.3. Diagramas de Venn
1.4. Operaciones con conjuntos
  • Estudio de la unidad
Semana 2 Unidad 2. Relaciones y aplicaciones
2.1. Definición de relación
2.2. Relaciones de orden
2.3. Relaciones de equivalencia
2.4. Diagramas de Hasse
2.5. Extremales
  • Estudio de la unidad
Semana 3 Unidad 3. Combinatoria
3.1. Principios básicos del conteo
3.2. Variaciones
3.3. Permutaciones
3.4. Combinaciones
3.5. Repartos
3.6. Principio del palomar
  • Estudio de la unidad
Semanas 4 a 7 Unidad 4. Inducción y recurrencias
4.1. Inducción matemática
4.2. Recursividad
4.3. Relaciones de recurrencia
  • Estudio de la unidad
  • Actividad de Evaluación Continua 1
  • Control 1
Semana 8 Unidad 5. Aritmética Modular
5.1. Estructuras algebraicas
5.2. Aritmética entera
5.3. Algoritmo de Euclides
5.4. Teorema de Bezout
5.5. Congruencias
5.6. Aritmética modular
5.7. Ecuaciones diofánticas
  • Estudio de la unidad
Semana 9 Unidad 6. Teoría de números
6.1. Bases de numeración
6.2. Cambios entre bases de numeración
6.3. Números primos
  • Estudio de la unidad
Semana 10 Unidad 7. Ampliación de aritmética modular
7.1. Conjunto cociente
7.2. Sistemas de congruencias: teorema chino del resto
7.3. Aritmética en Zn
7.4. Función de Euler
7.5. Pequeño teorema de Fermat
7.6. Aplicaciones: cifrado y criptografía
  • Estudio de la unidad
  • Actividad de Aprendizaje 1
Semana 11 Unidad 8. Grafos
8.1. Representación de grafos
8.2. Grafos orientados
8.3. Tipos de grafos
8.4. Operaciones con grafos
8.5. Árboles
  • Estudio de la unidad
Semana 12 Unidad 9. Algoritmos con grafos
9.1. Árboles recubridores
9.2. Coloraciones
9.3. Grafos planos
9.4. Caminos mínimos
9.5. Eulerianos y hamiltonianos
  • Estudio de la unidad
Semana 13 Unidad 10. Álgebra de Boole
10.1. La algebrización de la lógica
10.2. Álgebra de Boole
10.3. Operaciones
10.4. Tablas de verdad
10.5. Aplicaciones del Álgebra de Boole
  • Estudio de la unidad
  • Actividad de Evaluación Continua 2
Semanas 14 y 15  
  • Estudio de la unidad
  • Actividad de Aprendizaje 2
  • Control 2
  • Control 3
Resto de semanas hasta finalización del semestre Estudio y preparación para el examen final, celebración del examen final y cierre de actas.

(*) Las fechas concretas se pueden consultar en el aula virtual de la asignatura y en la pestaña de “Precios, Calendario y Matriculación” de la titulación.

Sistema de evaluación

Durante el estudio de esta asignatura, el proceso de evaluación del aprendizaje es continuo y contempla la realización de:

- Una evaluación continua a lo largo del curso a través de acciones didácticas que supone el 40% de la nota final. Incluye la realización de los diferentes tipos de actividades de evaluación, de aprendizaje y controles.

  • Actividades de aprendizaje (AA): actividades que permiten evaluar el desarrollo de las competencias al hilo del desarrollo de las unidades didácticas. Pueden adoptar el formato de foro, cuestionario, glosario u otros.
  • Controles: actividades que permiten evaluar la adquisición de aspectos conceptuales y prácticos de la asignatura. Toman la forma de cuestionarios.
  • Actividades de evaluación continua (AEC): actividades que permitan evaluar el alcance de ciertos hitos académicos a lo largo del cuatrimestre. Pueden adoptar el formato de informes, cuestionarios, casos prácticos, comentarios de texto, etc.

- Un examen final presencial que supone el 60% de la nota final. Está dirigido a la valoración de las competencias y conocimientos adquiridos por el estudiante. El examen se evaluará de 0 a 10, tendrá una duración estimada de 90 minutos y podría ser de tipo mixto. Si hay parte tipo test, los errores penalizan con el objetivo de corregir las respuestas acertadas por azar.

Para poder presentarse al examen final presencial, en cualquiera de las convocatorias, es imprescindible cumplir los siguientes requisitos relacionados con la evaluación continua: realizar la totalidad de los controles contemplados en el apartado de "Contenidos y programación" de la asignatura y alcanzar una calificación mínima de 2 puntos sobre cuatro en la evaluación continua del curso.

El estudiante que se presenta al examen sin cumplir requisitos, será calificado con un cero en el examen final presencial y consumirá convocatoria.

Cuadro resumen del sistema de evaluación

Tipo de actividad Número de actividades planificadas Peso calificación
Actividades de aprendizaje
2
10%
Actividades de Evaluación Continua (AEC)
2
20%
Controles
3
10%
Examen final presencial
Si
60%
TOTAL 100%

Para aprobar la asignatura, es necesario obtener una calificación mínima de 5 en el examen final presencial, así como en la calificación total del curso, una vez realizado el cómputo ponderado de las calificaciones obtenidas en las actividades didácticas y en el examen final presencial.

Si un estudiante no aprueba la asignatura en la convocatoria ordinaria podrá examinarse en la convocatoria de septiembre. El estudiante que no se presente a la convocatoria de febrero y/o de julio ni a la de septiembre, perderá automáticamente todos los trabajos realizados a lo largo del curso. Deberá en este caso matricularse de nuevo en la asignatura.

Las fechas previstas para la realización de todas las actividades se indican en el aula virtual de la asignatura.

Originalidad de los trabajos académicos

Según la Real Academia Española, “plagiar” significa copiar en lo sustancial obras ajenas dándolas como propias. Dicho de otro modo, plagiar implica expresar las ideas de otra persona como si fuesen propias, sin citar la autoría de las mismas. Igualmente, la apropiación de contenido puede ser debida a una inclusión excesiva de información procedente de una misma fuente, pese a que esta haya sido citada adecuadamente. Teniendo en cuenta lo anterior, el estudiante deberá desarrollar sus conocimientos con sus propias palabras y expresiones. En ningún caso se aceptarán copias literales de párrafos, imágenes, gráficos, tablas, etc. de los materiales consultados. En caso de ser necesaria su reproducción, esta deberá contemplar las normas adecuadas para la citación académica.

Los documentos presentados en las actividades académicas podrán ser almacenados en formato papel o electrónico y servir de comparación con otros trabajos de terceros, a fin de proteger la originalidad de la fuente y evitar la apropiación indebida de todo o parte del trabajo del estudiante. Por tanto, podrán ser utilizados y almacenados por la universidad, a través del sistema que estime, con el único fin de servir como fuente de comparación de cualquier otro trabajo que se presente.

Sistema de calificaciones

El sistema de calificación de todas las actividades didácticas es numérico del 0 a 10 con expresión de un decimal, al que se añade su correspondiente calificación cualitativa:

0 – 4.9: Suspenso (SS)
5.0 – 6.9: Aprobado (AP)
7.0 – 8.9: Notable (NT)
9.0 – 10: Sobresaliente (SB)
Matrícula de honor (MH)

(RD 1125/2003, de 5 de septiembre, por lo que se establece el sistema europeo de créditos y el sistema de calificaciones en las titulaciones universitarias de carácter oficial y con validez en todo el territorio nacional).

La matrícula de honor se concede cuando el profesor lo considere oportuno en función de la excelencia de las actividades realizadas por el estudiante y las calificaciones obtenidas por el resto del grupo. No obstante, los criterios académicos de su concesión corresponden al departamento responsable de cada grado.